Домой Общая информация Линейная комбинации строк или столбцов матриц. Линейная зависимость и ранг матрицы Являются ли строки матрицы линейно зависимыми

Линейная комбинации строк или столбцов матриц. Линейная зависимость и ранг матрицы Являются ли строки матрицы линейно зависимыми

  • Обратная матрица, алгоритм вычисления обратной матрицы.
  • Система линейных алгебраических уравнений, основные свойства слау, однородность и неоднородность, совместность и несовместность, определенность слау, матричная форма записи слау и ее решения
  • Квадратные системы, метод Крамера
  • Элементарные преобразования слау. Метод Гаусса исследования слау.
  • Критерий совместности слау, теорема Кронекера-Капелли, геометрическая интерпретация на примере 2-х уравнений с 2-мя неизвестными.
  • Однородные слау. Свойство решений, фср, теорема об общем решении однородной системы. Критерий существования нетривиального решения.
  • Неоднородные слау. Теорема о структуре решения неоднородной слау. Алгоритм решения неоднородной слау.
  • Определение линейного (векторного) пространства. Примеры лп.
  • Линейно зависимые и линейно независимые системы векторов. Критерий линейной зависимости.
  • Достаточные условия линейной зависимости и линейной независимости систем векторов лп. Примеры линейно независимых систем в пространствах строк, многочленов, матриц.
  • Изоморфизм лп. Критерий изоморфности лп.
  • Подпространство лп и линейные оболочки систем векторов. Размерность линейной оболочки.
  • Теорема о пополнении базиса
  • Пересечение и сумма подпространств, прямая сумма подпространств. Теорема о размерности суммы подпространств.
  • Подпространство решений однородной слау, его размерность и базис. Выражение общего решения однородной слау через фср.
  • Матрица перехода от одного базиса лп к другому и ее свойства. Преобразование координат вектора при переходе к другому базису.
  • Определение и примеры линейных операторов, линейные отображения и линейные преобразования
  • Матрица линейного оператора, нахождение координат образа вектора
  • Действия с линейными операторами. Линейное пространство ло
  • Теорема об изоморфности множества линейных преобразований множеству квадратных матриц
  • Матрица произведения линейных преобразований. Примеры нахождение матриц операторов.
  • Определение и свойства обратного оператора, его матрица.
  • Критерий обратимости линейного оператора. Примеры обратимых и необратимых операторов.
  • Преобразование матрицы линейного оператора при переходе к другому базису.
  • Определитель и характеристический многочлен линейного оператора, их инвариантность по отношению к преобразованиям базиса.
  • Ядро и образ линейного оператора. Теорема о сумме размерностей ядра и образа. Нахождение ядра и образа линейного оператора в фиксированном базисе. Ранг и дефект линейного оператора.
  • Теорема инвариантности ядра и образа ло а относительно перестановочного с ним ло в
  • Алгебраическая и геометрическая кратности собственных значений и их взаимосвязь.
  • Критерий диагонализируемости матрицы линейного оператора, достаточные условия диагонализируемости линейного оператора.
  • Теорема Гамильтона-Кэли
  • Линейная алгебра

    Теория слау

    1. Матрицы, действия с матрицами, обратная матрица. Матричные уравнения и их решения.

    Матрица – прямоугольная таблица произвольных чисел, расположенных в определенном порядке, размером m*n (строк на столбцы). Элементы матрицы обозначаются, где i – номер строки, аj – номер столбца.

    Сложение (вычитание) матриц определены только для одноразмерных матриц. Сумма(разность) матриц – матрица, элементы которой являются соответственно сумма(разность) элементов исходных матриц.

    Умножение (деление) на число – умножение (деление) каждого элемента матрицы на это число.

    Умножение матриц определено только для матриц, число столбцов первой из которых равно числу строк второй.

    Умножение матриц – матрица, элементы которых задаются формулами:

    Транспонирование матрицы – такая матрицаB, строки (столбцы) которой являются столбцами (строками) в исходной матрицеA. Обозначается

    Обратная матрица

    Матричные уравнения – уравнения видаA*X=B есть произведение матриц, ответом на данное уравнение является матрицаX, которая находится с помощью правил:

    1. Линейная зависимость и независимость столбцов (строк) матрицы. Критерий линейной зависимости, достаточные условия линейной зависимости столбцов (строк) матрицы.

    Система строк (столбцов) называется линейно независимой , если линейная комбинация тривиальна (равенство выполняется только приa1…n=0), гдеA1…n – столбцы(строки), аa1…n – коэффициенты разложения.

    Критерий : для того, что бы система векторов была линейно зависма, необходимо и достаточно, чтобы хотя бы один из векторов системы линейно выражался через остальные векторы системы.

    Достаточное условие :

    1. Определители матрицы и их свойства

    Определитель матрицы (детерминанта) – такое число, которое для квадратной матрицыA может быть вычислено по элементам матрицы по формуле:

    , где - дополнительный минор элемента

    Свойства:

    1. Обратная матрица, алгоритм вычисления обратной матрицы.

    Обратная матрица – такая квадратная матрицаX,которая вместе с квадратной матрицей A того же порядка, удовлевторяет условию:, гдеE – единичная матрица, того же порядка что иA. Любая квадратная матрица с определителем, не равным нулю имеет 1 обратную матрицу. Находится с помощью метода элементарных преобразований и с помощью формулы:

      Понятие ранга матрицы. Теорема о базисном миноре. Критерий равенства нулю определителя матрицы. Элементарные преобразования матриц. Вычисления ранга методом элементарных преобразований. Вычисление обратной матрицы методом элементарных преобразований.

    Ранг матрицы – порядок базисного минора (rg A)

    Базисный минор – минор порядкаr не равный нулю, такой что все миноры порядка r+1 и выше равны нулю или не существуют.

    Теорема о базисном миноре - В произвольной матрице А каждый столбец {строка) является линейной комбинацией столбцов (строк), в которых расположен базисный минор.

    Доказательство: Пусть в матрицеAразмеров m*n базисный минор расположен в первых r строках и первых r столбцах. Рассмотрим определитель, который получен приписыванием к базисному минору матрицы А соответствующих элементов s-й строки и k-го столбца.

    Отметим, что при любых иэтот определитель равен нулю. Еслиили, то определительD содержит две одинаковых строки или два одинаковых столбца. Если жеи, то определитель D равен нулю, так как является минором (r+λ)-ro порядка. Раскладывая определитель по последней строке, получаем:, где- алгебраические дополнения элементов последней строки. Заметим, что, так как это базисный минор. Поэтому, гдеЗаписывая последнее равенство для, получаем, т.е. k-й столбец (при любом) есть линейная комбинация столбцов базисного минора, что и требовалось доказать.

    Критерий d etA=0 – Определитель равен нулю тогда и только тогда, когда его строки(столбцы) линейно зависимы.

    Элементарные преобразования :

    1) умножение строки на число, отличное от нуля;

    2) прибавление к элементам одной строки элементов другой строки;

    3) перестановка строк;

    4) вычеркивание одной из одинаковых строк (столбцов);

    5) транспонирование;

    Вычисление ранга – Из теоремы о базисном миноре следует, что ранг матрицы А равен максимальному числу линейно независимых строк(столбцов в матрице), следовательно задача элементарных преобразований найти все линейно независимые строки (столбцы).

    Вычисление обратной матрицы ­ - Преобразования могут быть реализованы умножением на матрицу A некоторой матрицы T, которая представляет собой произведение соответствующих элементарных матриц: TA = E.

    Это уравнение означает, что матрица преобразования T представляет собой обратную матрицу для матрицы . Тогдаи, следовательно,

    где – какие-то числа (некоторые из этих чисел или даже все могут быть равны нулю). Это означает наличие следующих равенств между элементами столбцов:

    Из (3.3.1) вытекает, что

    Если равенство (3.3.3) справедливо тогда и только тогда, когда , то строки называются линейно независимыми. Соотношение (3.3.2) показывает, что если одна из строк линейно выражается через остальные, то строки линейно зависимы.

    Легко видеть и обратное: если строки линейно зависимы, то найдется строка, которая будет линейной комбинацией остальных строк.

    Пусть, например, в (3.3.3) , тогда .

    Определение. Пусть в матрице А выделен некоторый минор r-го порядка и пусть минор (r+1)-го порядка этой же матрицы целиком содержит внутри себя минор . Будем говорить, что в этом случае минор окаймляет минор (или является окаймляющим для ).

    Теперь докажем важную лемму.

    Лемма об окаймляющих минорах. Если минор порядка r матрицы А= отличен от нуля, а все окаймляющие его миноры равны нулю, то любая строка (столбец) матрицы А является линейной комбинацией ее строк (столбцов), составляющих .

    Доказательство. Не нарушая общности рассуждений, будем считать, что отличный от нуля минор r-го порядка стоит в левом верхнем углу матрицы А= :



    .

    Для первых k строк матрицы А утверждение леммы очевидно: достаточно в линейную комбинацию включить эту же строку с коэффициентом, равным единице, а остальные – с коэффициентами, равными нулю.

    Докажем теперь, что и остальные строки матрицы А линейно выражаются через первые k строк. Для этого построим минор (r+1)-го порядка путем добавления к минору k-ой строки () и l -го столбца ():

    .

    Полученный минор равен нулю при всех k и l. Если , то он равен нулю как содержащий два одинаковых столбца. Если , то полученный минор является окаймляющим минором для и, следовательно, равен нулю по условию леммы.

    Разложим минор по элементам последнего l -го столбца:

    Полагая , получим:

    (3.3.6)

    Выражение (3.3.6) означает, что k-я строка матрицы А линейно выражается через первые r строк.

    Так как при транспонировании матрицы значения ее миноров не изменяются (ввиду свойства определителей), то все доказанное справедливо и для столбцов. Теорема доказана.

    Следствие I. Любая строка (столбец) матрицы является линейной комбинацией ее базисных строк (столбцов). Действительно, базисный минор матрицы отличен от нуля, а все окаймляющие его миноры равны нулю.

    Следствие II. Определитель n-го порядка тогда и только тогда равен нулю, когда он содержит линейно зависимые строки (столбцы). Достаточность линейной зависимости строк (столбцов) для равенства определителя нулю доказана ранее как свойство определителей.

    Докажем необходимость. Пусть задана квадратная матрица n-го порядка, единственный минор которой равен нулю. Отсюда следует, что ранг этой матрицы меньше n, т.е. найдется хотя бы одна строка, которая является линейной комбинацией базисных строк этой матрицы.

    Докажем еще одну теорему о ранге матрицы.

    Теорема. Максимальное число линейно независимых строк матрицы равно максимальному числу ее линейно независимых столбцов и равно рангу этой матрицы.

    Доказательство. Пусть ранг матрицы А= равен r. Тогда любые ее k базисных строк являются линейно независимыми, иначе базисный минор был бы равен нулю. С другой стороны, любые r+1 и более строк линейно зависимы. Предположив противное, мы могли бы найти минор порядка более чем r, отличный от нуля по следствию 2 предыдущей леммы. Последнее противоречит тому, что максимальный порядок миноров, отличных от нуля, равен r. Все доказанное для строк справедливо и для столбцов.

    В заключение изложим еще один метод нахождения ранга матрицы. Ранг матрицы можно определить, если найти минор максимального порядка, отличный от нуля.

    На первый взгляд, это требует вычисления хотя и конечного, но быть может, очень большого числа миноров этой матрицы.

    Следующая теорема позволяет, однако, внести в этот значительные упрощения.

    Теорема. Если минор матрицы А отличен от нуля, а все окаймляющие его миноры равны нулю, то ранг матрицы равен r.

    Доказательство. Достаточно показать, что любая подсистема строк матрицы при S>r будет в условиях теоремы линейно зависимой (отсюда будет следовать, что r – максимальное число линейно независимых строк матрицы или любые ее миноры порядка больше чем k равны нулю).

    Предположим противное. Пусть строки линейно независимы. По лемме об окаймляющих минорах каждая из них будет линейно выражаться через строки , в которых стоит минор и которые, ввиду того, что отличен от нуля, линейно независимы:

    Теперь рассмотрим следующую линейную комбинацию:

    или

    Используя (3.3.7) и (3.3.8), получаем

    ,

    что противоречит линейной независимости строк .

    Следовательно, наше предположение неверно и, значит, любые S>r строк в условиях теоремы линейно зависимы. Теорема доказана.

    Рассмотрим правило вычисления ранга матрицы – метод окаймляющих миноров, основанный на данной теореме.

    При вычислении ранга матрицы следует переходить от миноров меньших порядков к минорам больших порядков. Если уже найден минор r-го порядка , отличный от нуля, то требуется вычислить лишь миноры (r+1)-го порядка, окаймляющие минор . Если они равны нулю, то ранг матрицы равен r. Этот метод применяется и в том случае, если мы не только вычисляем ранг матрицы, но и определяем, какие столбцы (строки) составляют базисный минор матрицы.

    Пример. Вычислить методом окаймляющих миноров ранг матрицы

    Решение. Минор второго порядка, стоящий в левом верхнем углу матрицы А, отличен от нуля:

    .

    Однако все окаймляющие его миноры третьего порядка равны нулю:

    ; ;
    ; ;
    ; .

    Следовательно, ранг матрицы А равен двум: .

    Первая и вторая строки, первый и второй столбцы в данной матрице являются базисными. Остальные строки и столбцы являются их линейными комбинациями. В самом деле, для строк справедливы следующие равенства:

    В заключение отметим справедливость следующих свойств:

    1) ранг произведения матриц не больше ранга каждого из сомножителей;

    2) ранг произведения произвольной матрицы А справа или слева на невырожденную квадратную матрицу Q равен рангу матрицы А.

    Многочленные матрицы

    Определение. Многочленной матрицей или -матрицей называется прямоугольная матрица, элементы которой являются многочленами от одного переменного с числовыми коэффициентами.

    Над -матрицами можно совершать элементарные преобразования. К ним относятся:

    Перестановка двух строк (столбцов);

    Умножение строки (столбца) на число, отличное от нуля;

    Прибавление к одной строке (столбцу) другой строки (столбца), умноженной на любой многочлен .

    Две -матрицы и одинаковых размеров называются эквивалентными: , если от матрицы к можно перейти с помощью конечного числа элементарных преобразований.

    Пример. Доказать эквивалентность матриц

    , .

    1. Поменяем местами в матрице первый и второй столбцы:

    .

    2. Из второй строки вычтем первую, умноженную на ():

    .

    3. Умножим вторую строку на (–1) и заметим, что

    .

    4. Вычтем из второго столбца первый, умноженный на , получим

    .

    Множество всех -матриц данных размеров разбивается на непересекающиеся классы эквивалентных матриц. Матрицы, эквивалентные между собой, образуют один класс, не эквивалентные - другой.

    Каждый класс эквивалентных матриц характеризуется канонической, или нормальной, -матрицей данных размеров.

    Определение. Канонической, или нормальной, -матрицей размеров называется -матрица, у которой на главной диагонали стоят многочлены , где р - меньшее из чисел m и n (), причем не равные нулю многочлены имеют старшие коэффициенты, равные 1, и каждый следующий многочлен делиться на предыдущий. Все элементы вне главной диагонали равны 0.

    Из определения следует, что если среди многочленов имеются многочлены нулевой степени, то они в начале главной диагонали. Если имеются нули, то они стоят в конце главной диагонали.

    Матрица предыдущего примера есть каноническая. Матрица

    также каноническая.

    Каждый класс -матриц содержит единственную каноническую -матрицу, т.е. каждая -матрица эквивалентна единственной канонической матрице, которая называется канонической формой или нормальной формой данной матрицы.

    Многочлены, стоящие на главной диагонали канонической формы данной -матрицы, называются инвариантными множителями данной матрицы.

    Один из методов вычисления инвариантных множителей состоит в приведении данной -матрицы к канонической форме.

    Так, для матрицы предыдущего примера инвариантными множителями являются

    Из сказанного следует, что наличие одной и той же совокупности инвариантных множителей является необходимым и достаточным условием эквивалентности -матриц.

    Приведение -матриц к каноническому виду сводится к определению инвариантных множителей

    , ; ,

    где r – ранг -матрицы; - наибольший общий делитель миноров k-го порядка, взятый со старшим коэффициентом, равным 1.

    Пример. Пусть дана -матрица

    .

    Решение. Очевидно, наибольший общий делитель первого порядка , т.е. .

    Определим миноры второго порядка:

    , и т.д.

    Уже этих данных достаточно для того, чтобы сделать вывод: , следовательно, .

    Определяем

    ,

    Следовательно, .

    Таким образом, канонической формой данной матрицы является следующая -матрица:

    .

    Матричным многочленом называется выражение вида

    где - переменное; - квадратные матрицы порядка n с числовыми элементами.

    Если , то S называют степенью матричного многочлена, n – порядком матричного многочлена.

    Любую квадратичную -матрицу можно представить в виде матричного многочлена. Справедливо, очевидно, и обратное утверждение, т.е. любой матричный многочлен можно представить в виде некоторой квадратной -матрицы.

    Справедливость данных утверждений со всей очевидностью вытекает из свойств операций над матрицами. Остановимся на следующих примерах:

    Пример. Представить многочленную матрицу

    в виде матричного многочлена можно следующим образом

    .

    Пример. Матричный многочлен

    можно представить в виде следующей многочленной матрицы ( -матрицы)

    .

    Эта взаимозаменяемость матричных многочленов и многочленных матриц играет существенную роль в математическом аппарате методов факторного и компонентного анализа.

    Матричные многочлены одинакового порядка можно складывать, вычитать и умножать аналогично обычным многочленам с числовыми коэффициентами. Следует, однако, помнить, что умножение матричных многочленов, вообще говоря, не коммутативно, т.к. не коммутативно умножение матриц.

    Два матричных многочлена называются равными, если равны их коэффициенты, т.е. соответствующие матрицы при одинаковых степенях переменного .

    Суммой (разностью) двух матричных многочленов и называется такой матричный многочлен, у которого коэффициент при каждой степени переменного равен сумме (разности) коэффициентов при той же степени в многочленах и .

    Чтобы умножить матричный многочлен на матричный многочлен , нужно каждый член матричного многочлена умножить на каждый член матричного многочлена , сложить полученные произведения и привести подобные члены.

    Степень матричного многочлена – произведения меньше или равна сумме степеней сомножителей.

    Операции над матричными многочленами можно осуществлять с помощью операций над соответствующими -матрицами.

    Чтобы сложить (вычесть) матричные многочлены, достаточно сложить (вычесть) соответствующие -матрицы. То же относится к умножению. -матрица произведения матричных многочленов равна произведению -матриц сомножителей.

    С другой стороны и можно записать в виде

    где В 0 – невырожденная матрица.

    При делении на существует однозначно определенное правое частное и правый остаток

    где степень R 1 меньше степени , или (деление без остатка), а также левое частное и левый остаток тогда и только тогда, когда, где порядка

    Пусть

    Столбцы матрицы размерности . Линейной комбинацией столбцов матрицы называется матрица-столбец , при этом - некоторые действительные или комплексные числа, называемые коэффициентами линейной комбинации . Если в линейной комбинации взять все коэффициенты равными нулю, то линейная комбинация равна нулевой матрице-столбцу.

    Столбцы матрицы называются линейно независимыми , если их линейная комбинация равна нулю лишь когда все коэффициенты линейной комбинации равны нулю. Столбцы матрицы называются линейно зависимыми , если существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

    Аналогично могут быть даны определения линейной зависимости и линейной независимости строк матрицы. В дальнейшем все теоремы формулируются для столбцов матрицы.

    Теорема 5

    Если среди столбцов матрицы есть нулевой, то столбцы матрицы линейно зависимы.

    Доказательство. Рассмотрим линейную комбинацию, в которой все коэффициенты равны нулю при всех ненулевых столбцах и единице при нулевом столбце. Она равна нулю, а среди коэффициентов линейной комбинации есть отличный от нуля. Следовательно, столбцы матрицы линейно зависимы.

    Теорема 6

    Если столбцов матрицы линейно зависимы, то и все столбцов матрицы линейно зависимы.

    Доказательство. Будем для определенности считать, что первые столбцов матрицы линейно зависимы. Тогда по определению линейной зависимости существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

    Составим линейную комбинацию всех столбцов матрицы, включив в нее остальные столбцы с нулевыми коэффициентами

    Но . Следовательно, все столбцы матрицы линейно зависимы.

    Следствие . Среди линейно независимых столбцов матрицы любые линейно независимы. (Это утверждение легко доказывается методом от противного.)

    Теорема 7

    Для того чтобы столбцы матрицы были линейно зависимы, необходимо и достаточно, чтобы хотя бы один столбец матрицы был линейной комбинацией остальных.

    Доказательство.

    Необходимость. Пусть столбцы матрицы линейно зависимы, то есть существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

    Предположим для определенности, что . Тогда то есть первый столбец есть линейная комбинация остальных.



    Достаточность . Пусть хотя бы один столбец матрицы является линейной комбинацией остальных, например, , где - некоторые числа.

    Тогда , то есть линейная комбинация столбцов равна нулю, а среди чисел линейной комбинации хотя бы один (при ) отличен от нуля.

    Пусть ранг матрицы равен . Любой отличный от нуля минор - го порядка называется базисным . Строки и столбцы, на пересечении которых стоит базисный минор, называются базисными .

    Пусть в матрице А размеров (m; n) выбраны произвольно k строк и k столбцов (k ≤ min(m; n)). Элементы матрицы, стоящие на пересечении выбранных строк и столбцов, образуют квадратную матрицу порядка k, определитель которой называется минором M kk порядка k y или минором k-го порядка матрицы A.

    Рангом матрицы называется максимальный порядок r отличных от нуля миноров матрицы A, а любой минор порядка r, отличный от нуля, — базисным минором. Обозначение: rang A = r. Если rang A = rang B и размеры матриц A и Bсовпадают, то матрицы A и B называются эквивалентными. Обозначение: A ~ B.

    Основными методами вычисления ранга матрицы являются метод окаймляющих миноров и метод .

    Метод окаймляющих миноров

    Суть метода окаймляющих миноров состоит в следующем. Пусть в матрице уже найден минор порядка k, отличный от нуля. Тогда далее рассматриваются лишь те миноры порядка k+1, которые содержат в себе (т. е. окаймляют) минорk-го порядка, отличный от нуля. Если все они равны нулю, то ранг матрицы равен k, в противном случае среди окаймляющих миноров (k+1)-го порядка найдется отличный от нуля и вся процедура повторяется.

    Линейная независимость строк (столбцов) матрицы

    Понятие ранга матрицы тесно связано с понятием линейной независимости ее строк (столбцов).

    Строки матрицы :

    называют линейно зависимыми, если найдутся такие числа λ 1 , λ 2 , λ k , что справедливо равенство:

    Строки матрицы A называются линейно независимыми, если вышеприведённое равенство возможно лишь в случае, когда все числа λ 1 = λ 2 = … = λ k = 0

    Аналогичным образом определяется линейная зависимость и независимость столбцов матрицы A.

    Если какая-либо строка (a l) матрицы A (где (a l)=(a l1 , a l2 ,…, a ln)) может быть представлена в виде

    Аналогичным образом определяется понятие линейной комбинации столбцов. Справедлива следующая теорема о базисном миноре.

    Базисные строчки и базисные столбцы линейно независимы. Любая строка (либо столбец) матрицы A является линейной комбинацией базисных строк (столбцов), т. е. строк (столбцов), пересекающих базисный минор. Таким образом, ранг матрицы A: rang A = k равен максимальному числу линейно независимых строк (столбцов) матрицы A.

    Т.е. ранг матрицы — это размерность самой большой квадратной матрицы внутри той матрицы, для которой нужно определить ранг, для которой определитель не равен нулю. Если исходная матрица не является квадратной, либо если она квадратная, но её определитель равен нулю, то для квадратных матриц меньшего порядка строки и столбцы выбираются произвольно.

    Кроме как через определители, ранг матрицы можно посчитать по числу линейно независимых строк или столбцов матрицы. Он равен количеству линейно независимых строк или столбцов в зависимости от того, чего меньше. Например, если матрица имеет 3 линейно независимых строки и 5 линейно независимых столбцов, то её ранг равняется трём.

    Примеры нахождения ранга матрицы

    Методом окаймляющих миноров найти ранг матрицы

    Р е ш е н и е. Минор второго порядка

    окаймляющий минор M 2 , также отличен от нуля. Однако оба минора четвёртого порядка, окаймляющие M 3 .

    равны нулю. Поэтому ранг матрицы A равен 3, а базисным минором является, например, представленный выше минор M 3 .

    Метод элементарных преобразований основан на том, что элементарные преобразования матрицы не меняют её ранга. Используя эти преобразования, можно привести матрицу к виду, когда все её элементы, кроме a 11 , a 22 , …, a rr (r ≤min (m, n)), равны нулю. Это, очевидно, означает, что rang A = r. Заметим, что если матрица n-го порядка имеет вид верхней треугольной матрицы, т. е. матрицы, у которой все элементы под главной диагональю равны нулю, то её определитесь равен произведению элементов, стоящих на главной диагонали. Это свойство можно использовать при вычислении ранга матрицы методом элементарных преобразований: необходимо с их помощью привести матрицу к треугольной и тогда, выделив соответствующий определитель, найдём, что ранг матрицы равен числу элементов главной диагонали, отличных от нуля.

    Методом элементарных преобразований найти ранг матрицы

    Р е ш е н и е. Обозначим i-ю строку матрицы A символом α i . На первом этапе выполним элементарные преобразования

    На втором этапе выполним преобразования

    В результате получим

    Система векторов одного и того же порядка называется линейно-зависимой, если из этих векторов путем соответствующей линейной комбинации можно получить нулевой вектор. (При этом не допускается, чтобы все коэффициенты линейной комбинации были равны нулю, так как это было бы тривиально.) В противном случае векторы называются линейно-независимыми. Например, следующие три вектора:

    линейно зависимы, так как что легко проверить. В случае линейной зависимости любой вектор можно всегда выразить через линейную комбинацию остальных векторов. В нашем примере: или или Это легко проверить соответствующими расчетами. Отсюда вытекает следующее определение: вектор линейно независим от других векторов, если его нельзя представить в виде линейной комбинации из этих векторов.

    Рассмотрим систему векторов, не уточняя, является ли она линейнозависимой или линейно-независимой. У каждой системы, состоящей из вектор-столбцов а, можно выявить максимально возможное число линейно-независимых векторов. Это число, обозначаемое буквой , и является рангом данной системы векторов. Так как каждую матрицу можно рассматривать как систему вектор-столбцов, ранг матрицы определяется как максимальное число содержащихся в ней линейнонезависимых вектор-столбцов. Для определения ранга матрицы пользуются и вектор-строками. Оба способа дают одинаковый результат для одной и той же матрицы, причем не может превосходить наименьшее из или Ранг квадратной матрицы порядка колеблется от 0 до . Если все векторы являются нулевыми, то ранг такой матрицы равен нулю. Если все векторы линейно независимы друг от друга, то ранг матрицы равен. Если образовать матрицу из приведенных выше векторов то ранг этой матрицы равен 2. Так как каждые два вектора могут быть сведены к третьему путем линейной комбинации, то ранг меньше 3.

    Но можно убедиться, что любые два вектора из них являются-линейно-независимыми, следовательно, ранг

    Квадратную матрицу называют вырожденной, если ее вектор-столбцы или вектор-строки линейно зависимы. Определитель такой матрицы равен нулю и обратной ей матрицы не существует, как уже было отмечено выше. Эти выводы эквивалентны друг другу. Вследствие этого квадратную матрицу называют невырожденной, или неособенной, если ее вектор-столбцы или вектор-строки независимы друг от друга. Определитель такой матрицы не равен нулю и обратная ей матрица существует (сравни со с. 43)

    Ранг матрицы имеет вполне очевидную геометрическую интерпретацию. Если ранг матрицы равен , то говорят, что -мерное пространство натянуто на векторов. Если ранг то векторов лежат в -мерном подпространстве, которое всех их включает в себя. Итак, ранг матрицы соответствует минимально необходимой размерности пространства, «в котором содержатся все векторы», -мерное подпространство в -мерном пространстве называют -мерной гиперплоскостью. Ранг матрицы соответствует наименьшей размерности гиперплоскости, в которой еще лежат все векторы.

    Новое на сайте

    >

    Самое популярное