Домой Оборудование Какие бывают разъемы жестких дисков? Что такое SATA Почему не USB и не Fire Wire.

Какие бывают разъемы жестких дисков? Что такое SATA Почему не USB и не Fire Wire.

Если вы собираетесь приобретать аксессуары для ремонта компьютеров, то переходник SATA USB — это первое, на что нужно обратить внимание. Такое устройство позволяет устанавливать связь между двумя наиболее распространенными интерфейсами. Стандарт САТА используется практически на всех внутренних дисках персональных компьютеров и ноутбуков. Портами УСБ оснащаются любые современные ПК.


Для чего можно использовать такой адаптер? Это именно тот инструмент, который понадобится в случае сбоя жесткого диска. Если дело пойдет не так с HDD, есть большая вероятность того, что компьютер перестанет загружаться. В таком случае придется заменить диск, но при этом будет утеряна информация, которая хранилась на предыдущем накопителе.

Если HDD частично поврежден, то это еще не значит, что все файлы на нем утеряны безвозвратно. Используя адаптер USB на SATA, вы, скорее всего, сможете восстановить большинство своих данных. Даже если диск не инициализируется, есть множество бесплатных программ, которые позволят просканировать разделы и обнаружить любую информацию, подлежащую восстановлению.

Сбой оборудования — это не единственная причина для использования адаптера. Например, пользователь может захотеть перейти на более вместительный и быстрый накопитель SSD. С помощью адаптера удастся перенести все старые данные на новый диск самостоятельно, не обращаясь за помощью к специалистам. Кроме того, HDD стали невероятно дешевыми. Любой пользователь, который регулярно обновляет свой компьютер, обычно имеет как минимум 1 накопитель с объемом более 500 Гб. С помощью этого простого адаптера можно будет превратить HDD во внешний диск, чтобы получить доступ к старым файлам.

Anker USB 3 to SATA Converter

Не все устройства SATA USB одинаковы. Некоторые используют устаревший стандарт, который негативно влияет на пропускную способность. Другие могут оказаться несовместимыми с новыми типами дисков. Существуют разновидности адаптеров, которые выгодно отличаются от остальных. В первую очередь стоит обратить внимание на Anker USB 3 to SATA Converter Adapter Cable.

Изучая продукцию Anker, можно прийти к выводу, что у компании нет недостатка в комплектующих и периферийных устройствах для компьютеров. Судя по многочисленным отзывам, все, начиная от зарядных устройств и заканчивая кабелями или адаптерами, пользователи оценивают очень высоко. Возможно, вы не встречали продукцию этой фирмы в локальных торговых точках, но ее без проблем можно отыскать в интернет-магазинах.

Переходник USB to SATA от Anker — это простое устройство, которое хорошо выполняет свою работу. Адаптер оснащен только самым необходимым оборудованием, и в нем нет никаких лишних компонентов. Разработчики сделали все возможное, чтобы устройство превосходно справлялось с возложенной на него задачей. Переходник USB SATA представляет собой черную прямоугольную коробку. Благодаря этому его можно положить на ровной поверхности, предотвращая отсоединение накопителя во время использования.

С задней стороны устройства можно подключить 2 кабеля: USB 3 для передачи данных и опциональный шнур питания для использования с мощными приводами. Кабели надежны и долговечны, что делает этот адаптер полезным, даже если расстояние между компьютером и устройством SATA 2 небольшое (в результате чего провода находятся в согнутом состоянии). Благодаря своему безупречному дизайну устройство будет отлично смотреться в офисе или мастерской по ремонту цифровой техники.

Возможности переходника от Anker

В отличие от некоторых других адаптеров на рынке, Anker оснащается аппаратным контроллером SATA 3. Если устройство полагается на программное обеспечение для преобразования сигналов, то это может привести к проблемам с производительностью и совместимостью. К счастью, используемый аппаратный контроллер Anker является стандартным, и он был тщательно протестирован с различными устройствами. Это означает, что практически любой компьютер или диск, который можно физически подключить к этому переходнику, будет работать. Благодаря встроенному адаптеру питания устройство поддерживает как 2,5-, так и 3,5-дюймовые диски.

Порт USB 3 способен выдавать лишь относительно небольшое количество энергии. Этого достаточно для питания компактных 2,5-дюймовых дисков и накопителей SSD. Но для 3,5-дюймовых устройств понадобится немного больше энергии, и в такой ситуации поможет адаптер питания. Что касается совместимости, то можно использовать жесткие диски, SSD, приводы Blu-Ray, DVD-рекордеры и комбинированные накопители. Адаптер работает практически со всеми операционными системами от Microsoft, начиная с Windows 98 и заканчивая Windows 10. Также поддерживается Mac OS. Теоретически, нет никаких оснований считать, что адаптер SATA в USB откажется работать с Linux, но официально эта система не поддерживается.

Благодаря интерфейсу USB 3 передача данных происходит по ускоренной процедуре. Теоретический предел составляет 5 Гбит/с, но добиться этого на практике довольно сложно. При использовании SSD скорость чтения обычно составляет около 350 Мбит/с, а скорость записи — примерно 250 Мбит/с. Рекордные темпы передачи данных можно получить только в том случае, если вы используете самые быстрые SSD, доступные на рынке. В случаях с обычными жесткими дисками ПК максимальная скорость составляет 120 Мбит/с для чтения и 100 Мбит/с для записи. В данном случае снижение пропускной способности через USB связано не с адаптером, а с устаревшей технологией HDD.

На этом переходнике не так много дополнительных функций, ведь простота — это его главное достоинство. Операционная система не распознает его, как адаптер, а просто видит стандартный внешний накопитель через USB. Это означает, что все встроенное программное обеспечение для резервного копирования будет работать без сбоев. Вы сможете использовать любую программу для восстановления данных или создавать образы без каких-либо специальных драйверов и настроек. В связи с отсутствием драйверов переходник SATA USB будет работать в безопасном режиме, и это делает его идеальным для диагностики и ремонта.

Inateck USB 3 to IDE/SATA Converter

Переходник Inateck Universal USB 3 to IDE/SATA Converter создан популярным производителем периферийных устройств, который разрабатывает не только потребительские, но и профессиональные устройства. Многие продукты компании Inateck отличаются расширенной функциональностью, при этом его цены сопоставимы с конкурентами.

Несмотря на большое количество опций, адаптер совместим со всеми типами операционных систем и дисков через USB. Единственное серьезное отличие переходника от других похожих устройств — это поддержка дисков IDE. Такие накопители уже давно вышли из моды, но они все еще используются некоторыми пользователями. Этот стандарт соединения применяется для ПК, ноутбуков, CD и DVD-приводов, а также для устройств, которые считывают гибкие магнитные диски.

Многие адаптеры совместимы только с малыми дисками IDE, поскольку на них нет возможности подключить питание. Но в данном случае, благодаря специальному силовому кабелю, вы без проблем сможете использовать не только 3,5-, но и 5,25-дюймовые диски. Адаптер работает с OSX, а также с операционными системами от Microsoft, начиная с Windows XP и заканчивая Windows 10.

Жёсткий диск - простая и маленькая "коробочка" с виду, хранящая огромные объёмы информации в компьютере любого современного пользователя.

Именно таковой она кажется снаружи: достаточно незамысловатой вещицей. Редко кто при записи, удалении, копировании и прочих действий с файлами различной важности задумывается о принципе взаимодействия жёсткого диска с компьютером. А если ещё точнее - непосредственно с самой материнской платой.

Как эти компоненты связаны в единую бесперебойную работу, каким образом устроен сам жесткий диск, какие разъемы подключения у него есть и для чего каждый из них предназначен - это ключевая информация о привычном для всех устройстве хранения данных.

Интерфейс HDD

Именно этим термином можно корректно называть взаимодействие с материнской платой. Само же слово имеет гораздо более широкое значение. К примеру, интерфейс программы. В этом случае подразумевается та часть, которая обеспечивает способ взаимодействия человека с ПО (удобный «дружелюбный» дизайн).

Однако же рознь. В случае с HDD и материнской платой он представляет не приятное графическое оформление для пользователя, а набор специальных линий и протоколов передачи данных. Друг к другу эти компоненты подключаются при помощи шлейфа - кабеля со входами на обоих концах. Они предназначены для соединения с портами на жёстком диске и материнской плате.

Иными же словами, весь интерфейс на этих устройствах - два кабеля. Один подключается в разъем питания жесткого диска с одного конца и к самому БП компьютера с другого. А второй из шлейфов соединяет HDD с материнской платой.

Как в былые времена подключали жёсткий диск - разъем IDE и другие пережитки прошлого

Самое начало, после которого появляются более совершенные интерфейсы HDD. Древний по нынешним меркам появился на рынке примерно в 80-х годах прошлого столетия. IDE дословно в переводе означает «встроенный контроллер».

Будучи параллельным интерфейсом данных, его ещё принято называть ATA - Однако стоило со временем появиться новой технологии SATA и завоевать гигантскую популярность на рынке, как стандартный ATA был переименован в PATA (Parallel ATA) во избежание путаниц.

Крайне медленный и совсем уж сырой по своим техническим возможностям, этот интерфейс в годы своей популярности мог пропускать от 100 до 133 мегабайта в секунду. И то лишь в теории, т. к. в реальной практике эти показатели были ещё скромнее. Конечно же, более новые интерфейсы и разъемы жестких дисков покажут ощутимое отставание IDE от современных разработок.

Думаете, не стоит преуменьшать и привлекательных сторон? Старшие поколения наверняка помнят, что технические возможности PATA позволяли обслуживать сразу два HDD при помощи только одного шлейфа, подключаемого к материнской плате. Но пропускная способность линии в таком случае аналогично распределялась пополам. И это уже не упоминая ширины провода, так или иначе препятствующую своими габаритами потоку свежего воздуха от вентиляторов в системном блоке.

К нашему времени IDE уже закономерно устарел как в физическом, так и в моральном плане. И если до недавнего времени этот разъём встречался на материнских платах низшего и среднего ценового сегмента, то теперь сами производители не видят в нём какой-либо перспективы.

Всеобщий любимец SATA

На длительное время IDE стал наиболее массовым интерфейсом работы с накопителями информации. Но технологии передачи и обработки данных долго на месте не застаивались, предложив вскоре концептуально новое решение. Сейчас его можно встретить практически у любого владельца персонального компьютера. И название ему - SATA (Serial ATA).

Отличительные особенности этого интерфейса - параллельная низкое энергопотребление (сравнительно с IDE), меньший нагрев комплектующих. За всю историю своей популярности SATA пережил развитие в три этапа ревизий:

  1. SATA I - 150 мб/c.
  2. SATA II - 300 мб/с.
  3. SATA III - 600 мб/с.

К третьей ревизии также была разработана пара обновлений:

  • 3.1 - более усовершенствованная пропускная способность, но всё так же ограниченная лимитом в 600 мб/с.
  • 3.2 со спецификацией SATA Express - успешно реализованное слияние SATA и PCI-Express устройств, позволившее увеличить скорость чтения/записи интерфейса до 1969 мб/с. Грубо говоря, технология является «переходником», который переводит обычный режим SATA на более скоростной, которым и обладают линии PCI-разъёмов.

Реальные же показатели, разумеется, явно отличались от официально заявленных. В первую очередь это обуславливает избыточная пропускная способность интерфейса - многим современным накопителям те же 600 мб/с излишне, т. к. они изначально не разработаны для работы на такой скорости чтения/записи. Лишь с течением времени, когда рынок постепенно будет полниться высокоскоростными накопителями с невероятными для сегодняшнего дня показателями скорости работы, технический потенциал SATA будет задействован в полном объёме.

И наконец, были доработаны многие физические аспекты. SATA рассчитан на использование более длинных кабелей (1 метр против 46 сантиметров, которыми подключались жесткие диски с разъемом IDE) с гораздо компактными размерами и приятным внешним видом. Обеспечена поддержка «горячей замены» HDD - подключать/отсоединять их можно и без отключения питания компьютера (правда, предварительно всё же необходимо активировать режим AHCI в BIOS).

Возросло и удобство подключения шлейфа к разъёмам. При этом все версии интерфейса обратно совместимы друг с другом (жёсткий диск SATA III без проблем подключается к II на материнской плате, SATA I - к SATA II и т. д.). Единственный нюанс - максимальная скорость работы с данными будет ограничена наиболее «старым» звеном.

Обладатели старых устройств также не останутся в стороне - существующие переходники с PATA на SATA переменно спасут от более дорогостоящей покупки современного HDD или новой материнской платы.

External SATA

Но далеко не всегда стандартный жёсткий диск подходит под задачи пользователя. Бывает необходимость в хранении больших объёмов данных, которым требуется использование в разных местах и, соответственно, транспортировка. Для таких случаев, когда с одним накопителем приходится работать не только лишь дома, и разработаны внешние жёсткие диски. В связи со спецификой своего устройства, им требуется совсем другой интерфейс подключения.

Таковым является ещё разновидность SATA, созданной под разъемы внешних жестких дисков, с приставкой external. Физически этот интерфейс не совместим со стандартными SATA-портами, однако при этом обладает аналогичной пропускной способностью.

Присутствует поддержка «горячей замены» HDD, а длина самого кабеля увеличена до двух метров.

В изначальном варианте eSATA позволяет лишь обмениваться информацией, без подачи в соответствующий разъем внешнего жесткого диска необходимой электроэнергии. Этот недостаток, избавляющий от необходимости использования сразу двух шлейфов для подключения, был исправлен с приходом модификации Power eSATA, совместив в себе технологии eSATA (отвечает за передачу данных) с USB (отвечает за питание).

Универсальная последовательная шина

Фактически став наиболее распространённым стандартом последовательного интерфейса подключения цифровой техники, Universal Serial Bus в наши дни известен каждому.

Перенеся долгую историю постоянных крупных изменений, USB - это высокая скорость передачи данных, обеспечение электропитанием беспрецедентное множество периферийных устройств, а также простота и удобство в повседневном использовании.

Разрабатываемый такими компаниями, как Intel, Microsoft, Phillips и US Robotics, интерфейс стал воплощением сразу нескольких технических стремлений:

  • Расширение функционала компьютеров. Стандартная периферия до появления USB была достаточно ограничена в разнообразии и под каждый тип требовался отдельный порт (PS/2, порт для подключения джойстика, SCSI и т. д.). С приходом USB задумывалось, что он и станет единой универсальной заменой, существенно упростив взаимодействие устройств с компьютером. Более того, предполагалось также этой новой для своего времени разработкой стимулировать появление нетрадиционных периферийных устройств.
  • Обеспечить подключение мобильных телефонов к компьютерам. Распространяющая в те годы тенденция перехода мобильных сетей на цифровую передачу голоса выявила, что ни одни из разработанных тогда интерфейсов не мог обеспечить передачу данных и речи с телефона.
  • Изобретение комфортного принципа «подключи и играй», пригодные для «горячего подключения».

Как и в случае с подавляющим большинством цифровой техники, USB-разъем для жесткого диска за долгое время стал полностью привычным для нас явлением. Однако в разные года своего развития этот интерфейс всегда демонстрировал новые вершины скоростных показателей чтения/записи информации.

Версия USB

Описание

Пропускная способность

Первый релизный вариант интерфейса после нескольких предварительных версий. Выпущен 15 января 1996 года.

  • Режим Low-Speed: 1.5 Мбит/с
  • Режим Full-Speed: 12 Мбит/с

Доработка версии 1.0, исправляющая множество её проблем и ошибок. Выпущенная в сентябре 1998 года, впервые получила массовую популярность.

Выпущенная в апреле 2000 года, вторая версия интерфейса располагает новым более скоростным режимом работы High-Speed.

  • Режим Low-Speed: 1.5 Мбит/с
  • Режим Full-Speed: 12 Мбит/с
  • Режим High-Speed: 25-480 Мбит/с

Новейшее поколение USB, получившее не только обновлённые показатели пропускной способности, но и выпускаемая в синем/красном цвете. Дата появления - 2008 год.

До 600 Мбайт в секунду

Дальнейшая разработка третьей ревизии, вышедшая в свет 31 июля 2013 года. Делится на две модификации, которые могут обеспечить любой жёсткий диск с USB-разъёмом максимальной скорость до 10 Гбит в секунду.

  • USB 3.1 Gen 1 - до 5 Гбит/с
  • USB 3.1 Gen 2 - до 10 Гбит/с

Помимо этой спецификации, различные версии USB реализованы и под разные типы устройств. Среди разновидностей кабелей и разъёмов этого интерфейса выделяют:

USB 2.0

Стандартный

USB 3.0 уже мог предложить ещё один новый тип - С. Кабели этого типа симметричны и вставляются в соответствующее устройство с любой стороны.

С другой стороны, третья ревизия уже не предусматривает Mini и Micro «подвиды» кабелей для типа А.

Альтернативный FireWire

При всей своей популярности, eSATA и USB - ещё не все варианты того, как подключить разъем внешнего жесткого диска к компьютеру.

FireWire - чуть менее известный в народных массах высокоскоростной интерфейс. Обеспечивает последовательное подключение внешних устройств, в поддерживаемое число которых также входит и HDD.

Его свойство изохронной передачи данных главным образом нашло своё применение в мультимедийной технике (видеокамеры, DVD-проигрыватели, цифровая звуковая аппаратура). Жёсткие диски им подключают гораздо реже, отдавая предпочтение SATA или более совершенному USB-интерфейсу.

Свои современные технические показатели эта технология приобретала постепенно. Так, исходная версия FireWire 400 (1394a) была быстрее своего тогдашнего главного конкурента USB 1.0 - 400 мегабит в секунду против 12. Максимально допустимая длина кабеля - 4.5 метра.

Приход USB 2.0 оставил соперника позади, позволяя обменивать данные со скоростью 480 мегабит в секунду. Однако с выходом нового стандарта FireWire 800 (1394b), позволявший передавать 800 мегабит в секунду с максимальной длинной кабеля в 100 метров, USB 2.0 на рынке была менее востребована. Это спровоцировало разработку третьей версии последовательной универсальной шины, расширившей потолок обмена данных до 5 гбит/с.

Кроме этого, отличительной особенностью FireWire является децентрализованность. Передача информации через USB-интерфейс обязательно требует наличие ПК. FireWire же позволяет обмениваться данными между устройствами без обязательного привлечения компьютера к процессу.

Thunderbolt

Своё видение того, какой разъем жесткого диска должен в будущем стать безоговорочным стандартом, показала компания Intel совместно с Apple, представив миру интерфейс Thunderbolt (или, согласно его старому кодовому названию, Light Peak).

Построенная на архитектурах PCI-E и DisplayPort, эта разработка позволяет передавать данные, видео, аудио и электроэнергию через один порт с по-настоящему впечатляющей скоростью - до 10 Гб/с. В реальных тестах этот показатель был чуть скромнее и доходил максимум до 8 Гб/с. Тем не менее даже так Thunderbolt обогнал свои ближайшие аналоги FireWire 800 и USB 3.0, не говоря уже и о eSATA.

Но столь же массового распространения эта перспективная идея единого порта и коннектора пока что не получила. Хотя некоторыми производителями сегодня успешно встраиваются разъемы внешних жестких дисков, интерфейс Thunderbolt. С другой стороны, цена за технические возможности технологии тоже сравнительно немалая, поэтому и встречается эта разработка в основном среди дорогостоящих устройств.

Совместимость с USB и FireWire можно обеспечить при помощи соответствующих переходников. Такой подход не сделает их более быстрыми в плане передачи данных, т. к. пропускная способность обоих интерфейсов всё равно останется неизменной. Преимущество здесь только одно - Thunderbolt не будет ограничивающим звеном при подобном подключении, позволив задействовать все технические возможности USB и FireWire.

SCSI и SAS - то, о чём слышали далеко не все

Ещё один параллельный интерфейс подключения периферийных устройств, сместивший в один момент акцент своего развития с настольных компьютеров на более широкий спектр техники.

«Small Computer System Interface» был разработан чуть ранее SATA II. К моменту выхода последнего, оба интерфейса по своим свойствам были практически идентичными друг другу, способные обеспечить разъем подключения жесткого диска стабильной работой с компьютеров. Однако SCSI использовал в работе общую шину, из-за чего с контроллером могло работать лишь одно из подключённых устройств.

Дальнейшая доработка технологии, которая приобрела новое название SAS (Serial Attached SCSI), уже была лишена своего прежнего недостатка. SAS обеспечивает подключение устройств с набором управляемых команд SCSI по физическому интерфейсу, который аналогичен тому же SATA. Однако более широкие возможности позволяют подключать не только лишь разъемы жестких дисков, но и многую другую периферию (принтеры, сканеры и т. д.).

Поддерживается «горячая замена» устройств, расширители шины с возможностью одновременного подключения нескольких SAS-устройств к одному порту, а также предусмотрена обратная совместимость с SATA.

Перспективы NAS

Интереснейший способ работы с большими объёмами данных, стремительно набирающий популярность в кругах современных пользователей.

Или же сокращённо NAS представляют собой отдельный компьютер с некоторым дисковым массивом, который подключен к сети (зачастую к локальной) и обеспечивает хранение и передачу данных среди других подключённых компьютеров.

Выполняя роль сетевого хранилища, к другим устройствам этот мини-сервер подключается по обыкновенному Ethernet-кабелю. Дальнейший доступ к его настройкам осуществляется через любой браузер с подключением к сетевому адресу NAS. Имеющиеся данные на нём можно использовать как по Ethernet-кабелю, так и при помощи Wi-Fi.

Эта технология позволяет обеспечить достаточно надёжный уровень хранения информации и предоставлять к ней удобный лёгкий доступ для доверенных лиц.

Особенности подключения жёстких дисков к ноутбукам

Принцип работы HDD со стационарным компьютером предельно прост и понятен каждому - в большинстве случаев требуется соответствующим кабелем соединить разъемы питания жесткого диска с блоком питания и аналогичным образом подключить устройство к материнской плате. При использовании внешних накопителей можно вообще обойтись всего одним шлейфом (Power eSATA, Thunderbolt).

Но как правильно использовать разъемы жестких дисков ноутбуков? Ведь иная конструкция обязывает учитывать и несколько иные нюансы.

Во-первых, для подключения накопителей информации прямиком «внутрь» самого устройства следует учитывать то, что форм-фактор HDD должен быть обозначен как 2.5”

Во-вторых, в ноутбуке жесткий диск подсоединяется к материнской плате напрямую. Без каких-либо дополнительных кабелей. Достаточно просто открутить на дне предварительно выключенного ноутбука крышку для HDD. Она имеет прямоугольный вид и обычно крепится парой болтов. Именно в ту ёмкость и нужно помещать устройство хранения.

Все разъемы жестких дисков ноутбуков абсолютно идентичны своим более крупным «собратьям», предназначенных для ПК.

Ещё один вариант подключения - воспользоваться переходником. К примеру, накопитель SATA III можно подключить к USB-портам, установленным на ноутбуке, при помощи переходного устройства SATA-USB (на рынке представлено огромное множество подобных устройств для самых разных интерфейсов).

Достаточно лишь подсоединить HDD к переходнику. Его, в свою очередь, подключить к розетке 220В для подачи электропитания. И уже кабелем USB соединить всю эту конструкцию с ноутбуком, после чего жесткий диск будет отображаться при работе как ещё один раздел.

Интерфейс eSATA и высокоскоростной внешний кейс для десктопных винчестеров любой емкости

Емкие внешние накопители и контейнеры для 3,5-дюймовых жестких дисков, как правило, ориентировались на использование традиционно удобных для этих целей последовательных интерфейсов USB (1.1 и 2.0) и FireWire (IEEE 1394a, 1394b), а с некоторых пор к ним прибавились и сетевые интерфейсы (Fast и Gigabit Ethernet, Wi-Fi, Wireless USB). При всей привлекательности таких решений главным их недостатком является весьма посредственная скорость интерфейса, существенно меньшая, чем возможности применяемых в таких устройствах современных жестких дисков (исключение, быть может, составляют редкие пока и дорогие IEEE 1394b и Gigabit Ethernet - и то с рядом оговорок). Другим немаловажным недостатком здесь является необходимость использовать специальные преобразователи интерфейсов - контроллеры, транслирующие сигналы и протоколы одного из вышеперечисленных внешних интерфейсов в «родные» сигналы дисковых интерфейсов IDE или Serial ATA. Мало того, что такие контроллеры вносят немалую лепту в стоимость самих внешних накопителей и контейнеров, так ведь они еще и являются неизбежным звеном задержек в работе этих устройств, дополнительной точкой отказов и сбоев оборудования.

Интерфейс eSATA (external Serial ATA)

Вместе с тем, с некоторых пор проблема выбора интерфейса для внешнего накопителя или контейнера для жестких дисков обрела очень симпатичное и оптимальное решение: внедрение последовательного дискового интерфейса Serial ATA, изначально ориентированного на горячее подключение накопителей и увеличенную (по сравнению с IDE) длину сигнального кабеля, позволило почти даром создавать внешние накопители и контейнеры, просто выводя (внутренний) порт Serial ATA наружу компьютера. Именно так и поступали некоторые производители на первых порах, пока, наконец, не был принят стандарт eSATA (External Serial ATA, позднее оформленный как часть спецификаций и дизайн-гайдов Serial ATA 2.5), регламентирующий детали внешнего использования интерфейса Serial ATA.

eSATA был стандартизован в середине 2004 года путем определения конструкции кабелей, разъемов и сигнальных требований для внешнего использования SATA-дисков. eSATA характеризуется:

  • полной скоростью SATA-интерфейса для внешнего использования дисков;
  • отсутствием преобразования протоколов из IDE/SATA в USB/FireWire, то есть доступностью всех дисковых функций, включая S.M.A.R.T. для хост-контроллера (а это немаловажно!);
  • длиной сигнального кабеля до 2 метров (к сожалению, для USB/FW/Ethernet кабели могут быть длиннее);
  • низковольтной передачей сигналов по кабелю (400-500 мВ при передаче и 240-500 мВ при приеме), что снижает требования к питанию, уменьшает наводки, а также удовлетворяют увеличенной до 2 м длине кабеля;
  • лучшей, чем у SATA защитой от статического электричества (ESD) при подключении кабелей, уменьшенной электромагнитной интерференцией (EMI) сигналов кабеля, отвечающей стандартам FCC и CE;
  • лучшей надежностью и прочностью соединения кабеля в разъеме, чем у SATA, рассчитанной на многократную коммутацию.

Можно отметить, что более высокая скорость и меньшая латентность внешних накопителей с eSATA делает их более правильным выбором при работе с цифровым видео и HD-контентом. Разумеется, eSATA полностью использует все полезные функции интерфейса Serial ATA, такие как Native Command Queuing (NCQ), Port Multiplier, Hot Plug и многое другое. eSATA открывает новые горизонты для использования скоростных RAID-массивов в потребительских внешних накопителях, поскольку прежние интерфейсы существенно ограничивали их в скорости, так что терялся изначальный смысл их создания. eSATA пригоден для легкого наращивания дисковой емкости и в серверных системах, поскольку легко может быть подключен к SATA II и SAS-контроллерам.

Краткое сравнение основных особенностей eSATA с другими внешними дисковыми интерфейсами приведено в следующей таблице 1:

Таблица 1. Краткое сравнение внешних и внутренних дисковых интерфейсов.

Интерфейс eSATA IEEE 1394a IEEE 1394b USB 2.0 Ultra320 SCSI UltraATA
/133
Serial ATA 1.5 Gb/s Serial ATA 3.0 Gb/s
Скорость передачи данных, Мбит/с до 2400 400 786 480 2560 1064 1200 2400
Реальная полезная скорость передачи данных*, Мбайт/с до ~260 до ~40 до ~65 до ~33 до ~230 до ~115 до ~135 до ~260
Макс. количество дисков на одной шине 1 (до 5 с порт-мульти-плика-тором) 63 63 127 16 2 1 1
Макс. длина сигнального кабеля, м 2 4,5 (наращивание до 16 кабелей - 72 м) 5 16 0,46 1 1
Необходимость отдельного кабеля питания Да Нет Нет Нет Да Да Да Да
Количество линий в кабеле 7 6 8 4 68 80 7 7

*- по данным сайт

Форма и конструкций кабеля и коннекторов eSATA были специфицированы как экранированный вариант коннекторов SATA 1.0a и измененной формой разъема и круговой металлической обоймой штекера и гнезда:


Разъемы eSATA.

Здесь отсутствует L-подобный ключ разъема, не предусмотрен вертикальный вариант установки разъема.

Для ESD-защиты глубина хода разъема увеличена с 5 до 6,6 мм, контакты дополнительно утоплены внутрь. Для лучшей EMI-защиты введена дополнительная экранировка кабеля (он более толстый, чем простой SATA) и разъемов. Механически разъем сделан более надежным, имеет усиленную защелку по сравнению с SATA. Он рассчитан как минимум на 5000 «перетыканий» (в 100 раз больше, чем для SATA-коннектора).

Небольшим изменениям подверглись и сигнальные требования: если для метрового внутреннего SATA-кабеля допуски по уровню сигнала составляли от 400 до 600 мВ при передаче и от 325 до 600 мВ при приеме, то для двухметрового eSATA-кабеля они были ослаблены до 400-500 мВ при передаче и 240-500 мВ при приеме. Добавились и требования к проектированию плат контроллеров eSATA.

Это, в частности, может сказаться на том, что некоторые ранние SATA-чипсеты и платы не отвечают в полной мере требованиям сигналинга eSATA, и может даже потребоваться буферный чип eSATA. А для подключения eSATA-портов к старым материнским платам лучше пользовать дополнительный PCI-хост контроллер на более новом чипсете.

Примеры использования eSATA в ноутбуках.

Заметим также, что ранние продукты (мат. платы и PCI-контроллеры) с обычными (внутренними) портами SATA, выведенными наружу, не являются eSATA-совместимыми и не могут теперь быть использованы совместно с решениями eSATA (без соответствующей доработки/модификации). eSATA-совместимые устройства маркируются специальным логотипом (на рисунке выше). Недостатком eSATA, весьма существенным для применений во внешних накопителях, является отсутствие линий передачи питания от хоста к диску, как это имеет место в USB и FireWire. То есть eSATA-накопители придется питать отдельным кабелем от внешних блоков, либо от дополнительных портов USB/FireWire компьютера.

Строго говоря, поддержка hotplugging SATA-дисками предполагает (стандартом), что для питания диска при этом используется полнофункциональный коннектор питания Serial ATA (15-контактный), а не обычный Molex с линиями +5, +12 и землей (или переходник с Molex на SATA-питание). Дело в том, что специально для горячего подключения в коннекторе питания Serial ATA предусмотрено не только наличие дополнительной линии питания с напряжением +3,3 В, но также контактов иной длины на линиях +5 и +12 В, ответственных за правильную последовательность подачи питания на диск при горячем подключении. Тем не менее, на данный момент производители подавляющего числа потребительского (персонального) оборудования этим требованием пренебрегают и подают питание на коммутируемый диск (в том числе, внутри eSATA-устройств) по старинке.

eSATA может быть использован не только для внешних жестких дисков и RAID-контроллеров. Например, оптические накопители также могут быть подключены на eSATA, сами порты eSATA могут быть установлены в set-top-боксах, PVR-магнитофонах и гейм-консолях, и появление таких дивайсов - дело будущего.

Итак, обретя поддержку eSATA в виде спецификаций, производители оборудования (контроллеров, материнских плат, контейнеров и внешних накопителей) поспешили разработать и предложить рынку такие устройства, а наиболее дорогие материнские платы стали оснащаться портами eSATA. В результате, в 2006 году на прилавках магазинов массово появились дивайсы с поддержкой eSATA, неизменно вызывающие интерес у покупателей благодаря ряду привлекательных черт. И с одним из таких устройств мы познакомимся в данной статье.

Устройство и характеристики контейнера Thermaltake Muse eSATA 3.5

Thermaltake Muse eSATA 3.5 (модель A2319) представляет из себя стильный полностью металлический внешний контейнер (кейс) для жесткого диска форм-фактора 3,5 дюйма с интерфейсом Serial ATA.

Он входит в линейку Muse металлических внешних контейнеров этой компании для жестких дисков, с одним из которых мы уже знакомились ранее .

В отличие от корпусов большинства других внешних накопителей и контейнеров, использующих преимущественно пластмассовые или комбинированные компоненты, кейс TT Muse eSATA 3.5 сразу внушает уважение, поскольку выполнен целиком из алюминия, причем все 4 детали собственно корпуса производятся литьем+фрезеровкой (а не профилированием тонких листов), и минимальная толщина стенок корпуса составляет 2 мм (плюс ребра жесткости и боковины до 5 мм толщиной). Корпус снаружи и внутри обработан до получения красивой мелкозернистой поверхности (краска со временем не облезет, поскольку ее просто нет) и по месту содержит стильные дизайнерские полосы-вставки (как элементы литья корпуса) с продольным текстурированием. Вес корпуса с начинкой (без диска) равен почти 750 граммам, что дополнительно утяжеляет конструкцию, частично снижая самовибрации вращающегося накопителя. Габариты изделия - 220 на 125 на 40 мм, что относительно немного для контейнеров 3,5-дюймовых дисков, хотя порой встречаются и чуть более компактные.

Дополняет хорошее внешнее впечатление привлекательный круглый стрелочный индикатор с голубой подсветкой, придавая изделию характерные признаки принадлежности к продукции этой компании (вспомним, например, индикаторные панели Thermaltake с аналогичными измерительными приборами).

Корпус может быть установлен как вертикально на прилагаемой металлической же подставке (причем тщательно продуманные прокладки из светлого резинопластика предотвращают проскальзывания и царапания корпуса), так и горизонтально (снизу на нем есть малозаметные резиновые «ножки»).

Корпус не имеет специальный вентиляционных отверстий, однако поскольку он полностью металлический, отвод тепла от диска не должен вызвать заметных затруднений, что, тем не менее, мы детально исследуем ниже.

Конструкция корпуса такова, что установка и извлечение накопителя предельно просты - для этого не используется ни единого винтового соединения , - но при этом фиксация диска в корпусе жестка и надежна. Дело в том, что корпус состоит из массивного основания с продольными ребрами жесткости, к которому с торцов привинчены боковины, а с одного бока на шарнире (металлической спице) крепится откидная верхняя крышка.

Жесткий диск просто кладется на основание корпуса, надежно фиксируясь дном на четырех направляющих

через амортизирующие прокладки.

И когда крышка корпуса закрыта (на массивную боковую защелку), она надежно прижимает (через толстую микропористую резину) накопитель к основанию, не давая ему ни малейшей возможности для люфта и заодно создавая дополнительную защиту (амортизацию) при ударах/толчках корпуса.

Помнится, примерно такой же принцип крепления использует USB-контейнер Thermaltake Muse для 2,5-дюймовых накопителей .

Однако в том случае была реальная опасность деформировать диск нажатием на верхнюю крышку корпуса, тогда как в случае 3,5-дюймовых винчестеров такая опасность фактически исключена.

В результате, механическую часть корпуса и внешний вид контейнера A2319 мы можем оценить на твердое отлично. Чего, к сожалению, не скажешь о конструкции и функциональной продуманности электронной части этого изделия.

По спецификациям контейнер Muse eSATA 3.5 имеет внешний интерфейс eSATA (для кабеля внешней связи) и внутренний SATA (для диска), причем поддерживается как SATA 1.0, так и SATA 2.5 со скоростью передачи данных до 3 Гбит/с. Гарантируется совместимость с PC и MAC при наличии соответствующего оборудования.

На «заднем» торце корпуса (хотя с тем же успехом он может служить и передним торцом, поскольку никаких органов управления/индикации спереди нет) расположены выключатель питания, разъем eSATA и многоконтактный разъем питания.

Неотъемлемой функциональной частью этого контейнера является идущая в комплекте фирменная eSATA-планка Thermaltake A2360 на заднюю панель системного блока ПК,

на которой расположены разъемы eSATA (с внутренним SATA-кабелем с обратной стороны) и проприетарного питания +12В и +5В (от внутреннего 4-контактрого разъема питания типа Molex). На этот же разъем выведены провода от pin-коннектора, включаемого в разрыв индикатора активности винчестеров на системной плате (или отдельной плате расширения хост-контроллера SATA), что позволяет, в принципе, подавать сигнал активности диска из компьютера на контейнер. Комплект дополняется метровыми кабелями eSATA (стандартный, проходящий у TT под маркой A2361) и питания (специальный, хотя найти похожий наверняка не составит труда).

Напомним, что коннектор кабеля eSATA несовместим с внутренним разъемом SATA, так что заменить один кабель другим (и наоборот) не получится.

Процесс подключения контейнера TT Muse eSATA 3.5 к компьютеру при помощи этой планки и двух кабелей незатейлив и проиллюстрирован на следующем рисунке.

Единственным моментом, на который стоит обратить внимание, является подключение провода индикатора активности диска внутри компьютера: если вы его включите в разрыв индикатора дисковой активности, предназначенного для передней панели корпуса системного блока ПК (как рекомендуется руководством пользователя), то рискуете получить ситуацию, когда внешний контейнер будет индицировать активность не только собственного накопителя, но также всех винчестеров и оптических приводов в системном блоке. :) Видимо, оптимальным с этой точки зрения является случай подключения внешнего контейнера и его индикатора к отдельной плате SATA-контроллера (в слоте PCI и PCI Express x1), а внутренних дисков - к контроллерам на материнской плате. Например, дешевенький PCI-контроллер на чипе SiI3112A подойдет здесь как нельзя кстати, заодно обезопасив материнку от форс-мажорного выхода из строя и гарантировано обеспечив поддержку hot-plug (см. ниже).

Печатная плата контейнера ТТ Muse eSATA 3.5 предельно проста, хотя при этом и занимает достаточно много места.

Так что даже возникает вопрос, почему бы на свободном месте не спаять, например, простенький транслятор SATA-USB и разъем USB, придав, таким образом, изделию больше универсальности (впрочем, у TT уже появилась новая модель Muse A2357 в том же корпусе, где к eSATA добавлен порт USB). Или, скажем, не оснастить плату собственными преобразователями напряжения (хотя бы из +12 в +5В) и универсальным разъемом питания, чтобы контейнер мог питаться не только от того компьютера, на задней панели которого установлена фирменная планка Thermaltake A2360, но и от внешнего блока питания - для работы с разными компьютерами, оснащенными портом eSATA (к слову, этот недостаток исправлен в новейшей модели TT Max 4, где предусмотрен внешний блок питания). В общем, разработчики здесь поначалу явно поскупились.

Еще одно недоумение вызывает стильный стрелочный индикатор Thermaltake. Да, он красив, но какой с этого толк, если во включенном состоянии его стрелка фактически фиксируется в одном единственном положении и лишь слегка подрагивает (а подсветка неизменна)? Положение стрелки условно отражает величину напряжения питания (которое примерно постоянно). И хотя для этого прибора заявлена функция Datatransfar Meter, то есть якобы «измерение скорости» передачи данных по интерфейсу, на самом деле, этот прибор просто отражает активность сигнала индикатора обращения к дискам (см. выше), причем его схемная реализация на плате A2319 такова, что стрелка дергается при обращениях к дискам очень слабо, почти незаметно (видимо, напутали с номиналами резисторов). Не давая реальной информации о том, происходят ли обращения именно к диску контейнера, а не какому-либо из внутренних накопителей системного блока. Понятно, что интерфейс Serial ATA не имеет дополнительных сигнальных линий, чтобы по-простому получить эту информацию, но такая почти полная бесполезность индикатора как-то удручает. Будем надеяться, что положение исправили в новых моделях eSATA-контейнеров TT, где применение отдельной интерфейсной микросхемы способно в этом помочь.

Отдельно стоит упомянуть, что оптимальным является использование контейнера с контроллерами SATA, полностью поддерживающими функцию горячего подключения/отключения накопителей. К сожалению, не все SATA-контроллеры (особенно, из ранних) способны поддерживать hot-plug и hot-swap, поэтому во избежание недоразумений стоит ограничиться чипсетами Intel с южными мостами ICH6/7/8, VIA VT8237R, Nvidia nForce, ATI, SiS, Silicon Image, ULi или другими с поддержкой AHCI hot-plug. При горячем отключении такого накопителя от системы следует не забывать пользоваться опцией Safety Remove операционной системы во избежание потери данных и даже подвисания системы.

Упаковка и комплектация

Массивная и красочная коробка TT Muse eSATA 3.5″ несет скорее имиджевую нагрузку,

хотя внутри все аккуратно разложено, а контейнер закреплен между амортизаторами из пенополиуретана, так что его можно транспортировать даже с диском внутри.

Комплектность тоже достойно-достаточна, включая подробное руководство пользователя с иллюстрациями:

И поскольку каких-то иных изысков у нашего героя не наблюдается, нам остается лишь оценить его функциональные характеристики в работе.

Испытания

Испытания проводились при помощи системы на базе:

  • Процессор Intel Pentium 4 3,2 ГГц
  • Материнская плата на чипсете i945G
  • Системная память Patriot DDR2-533 2×256 Мбайт
  • Основной жесткий диск
  • Корпус с блоком питания 350 ватт
  • Операционная система MS Windows XP Professional SP2

Контейнер с накопителем подключался к контроллеру ICH7R на материнской плате и опознавался в системе как обычный (внутренний) винчестер.

Перво-наперво проверим, не падает ли скорость SATA. Так, например, с диском Hitachi Deskstar 7K400 HDS724040KLSA80, имеющим интерфейс Serial ATA 1.0 со скоростью передачи 1,5 Гбит/с, дисковый тест утилиты Everest 2.50 показал скорость интерфейса в 115,2 Мбайт/с, что в пределах погрешности измерений совпадает со скоростью интерфейса этого диска при внутреннем подключении (см., например, ). Среднее время случайного доступа при записи у этого накопителя в контейнере TT Muse eSATA 3.5 составила 12,8 мс,

что также соответствует случаю внутреннего подключения.

Для более современных 500-гигабайтных дисков Maxtor DiamondMax 11 6H500F0 и Seagate Barracuda 7200.9 ST3500641AS, поддерживающих Serial ATA II со скоростью 3 Гбит/с, измеренная утилитой HD Tach 3.0.1.0 скорость интерфейса составила:

и

что также практически идентично случаю внутреннего подключения эти дисков. Прогнав еще пару тестов и убедившись, что производительность современных винчестеров нисколько не падает при использовании их в контейнере A2319, мы пришли в выводу, что лучше подробнее протестировать нагрев дисков внутри корпуса A2319 при активной работе, поскольку именно этот аспект может оказаться наиболее критичным и, в конечном итоге, сказаться на производительности и надежности жестких дисков.

Для эмуляции нагрузки активной работой накопителя внутри контейнера был использован паттерн Heating для программы Iometer с более ли менее типичным для интенсивных дисковых операций характером обращений:

Эта нагрузка прогревает диск несколько меньше, чем, например, непрерывный тест на среднее время доступа при чтении (случайное чтение блоками по 512 байт), однако последнее фактически не встречается в реальной работе в течение сколько-нибудь продолжительного времени, тогда как паттерн Heating отражает реалии и при этом является достаточно активным «прожигателем», что подтверждается данными энергопотребления дисков на сходных нагрузках (см., например, последнюю часть нашего обзора).

Данный паттерн циклически запускался при глубине очереди команд 1, 4, 16 и 64 (по 15 минут на очередь), и после каждого часа измерений снимались показания температуры накопителя в контейнере A2319, а также материнской платы и диска в тестирующем системном блоке. Результаты регистрировались на базе показаний утилит SpeedFan 4.27 (непрерывно) и Everest 2.50 (ежечасно).

В качестве испытуемых дисков, помещенных в контейнер A2319, для этого теста были выбраны 2 накопителя большой емкости:

  • Hitachi Deskstar 7K400 HDS724040KLSA80 400 Гбайт как наиболее прожорливый (и «горячий») SATA-диск из известных нам по результатам испытаний .
  • Seagate Barracuda 7200.9 ST3500641AS 500 Гбайт как самый емкий (на момент наших испытаний) винчестер с поддержкой SATA 3 Гбит/с, обладающий при этом средним среди аналогов потреблением при активной работе .

На базе результатов, полученных при непрерывной работе контейнера с диском в течение 4 часов была построены следующие графики.

Как видим, после пары часов активной работы температура винчестера стабилизируется. При этом диск Seagate нагрелся всего до 46 градусов, что можно считать весьма неплохим показателем, а накопитель Hitachi нагрелся до 51 градуса, что также с запасом удовлетворяет требованиям спецификаций для температуры его эксплуатации.

Таким образом, можно, что заключить, что контейнер Thermaltake Muse eSATA 3.5 обеспечивает вполне достаточно охлаждение помещенного внутрь жесткого диска даже при активной его работе, а производительность диска находится на том же уровне, как если бы он использовался внутри компьютера.

Цена

В таблице ниже вы можете увидеть средние московские цены на Thermaltake Muse eSATA 3.5″ (A2319), актуальные на момент чтения вами данной статьи:

Thermaltake Muse eSATA 3.5″ (A2319)
Н/Д(0)

К сожалению, на момент написания этой статьи предложений этого продукта в Москве было достаточно мало, а цена оказывалась весьма высокой - около полусотни долларов, а то и больше. Беглый поиск по американским продавцам также показал весьма скромный характер предложений и высокую цену.

Заключение

Итак, контейнер Thermaltake Muse eSATA 3.5″ (A2319) для внешнего подключения жестких дисков по интерфейсу eSATA продемонстрировал достойные потребительские качества, среди которых особенно привлекает отличная механическая конструкция, превосходный внешний вид, великолепная скорость работы и вполне приемлемые охлаждающие и ударозащитные свойства. Некоторым недостатком стоит признать непродуманную электронную часть (хотя она здесь предельно проста), отсутствие поддержки интерфейса USB (как альтернативы) и необходимость использовать специальную планку и кабель для питания контейнера с диском от используемого настольного компьютера. То есть фактическую невозможность использовать этот диск с ноутбуком или мини-ПК. Кроме того, нам кажется несколько завышенной текущая цена на этот продукт, поскольку даже за меньшую цену можно приобрести пусть менее именитый, но более функциональный алюминиевый же контейнер для дисков IDE и SATA с внешними интерфейсами не только SATA, но и USB. Но об этом уже в другой раз. ;)

Здравствуйте! В мы с вами в подробностях рассмотрели устройство жесткого диска, но я специально ничего не сказал про интерфейсы - то есть способы взаимодействия жесткого диска и остальных устройств компьютера, или если еще конкретней, способы взаимодействия (соединения) жесткого диска и компьютера.

А почему не сказал? А потому что эта тема - достойна объема никак не меньшего целой статьи. Поэтому сегодня разберем во всех подробностях наиболее популярные на данный момент интерфейсы жесткого диска. Сразу оговорюсь, что статья или пост (кому как удобнее) в этот раз будет иметь внушительные размеры, но куда деваться, без этого к сожалению никак, потому как если написать кратко, получится совсем уж непонятно.

Понятие интерфейса жесткого диска компьютера

Для начала давайте дадим определение понятию "интерфейс". Говоря простым языком (а именно им я и буду по-возможности выражаться, ибо блог то на обычных людей рассчитан, таких как мы с Вами), интерфейс - способ взаимодействия устройств друг с другом и не только устройств. Например, многие из вас наверняка слышали про так называемый "дружественный" интерфейс какой-либо программы. Что это значит? Это значит, что взаимодействие человека и программы более легкое, не требующее со стороны пользователя большИх усилий, по сравнению с интерфейсом "не дружественным". В нашем же случае, интерфейс - это просто способ взаимодействия конкретно жесткого диска и материнской платы компьютера. Он представляет собой набор специальных линий и специального протокола (набора правил передачи данных). То есть чисто физически - это шлейф (кабель, провод), с двух сторон которого находятся входы, а на жестком диске и материнской плате есть специальные порты (места, куда присоединяется кабель). Таким образом, понятие интерфейс - включает в себя соединительный кабель и порты, находящиеся на соединяемых им устройствах.

Ну а теперь самый "сок" сегодняшней статьи, поехали!

Виды взаимодействия жестких дисков и материнской платы компьютера (виды интерфейсов)

Итак, первым на очереди у нас будет самый "древний" (80-е года) из всех, в современных HDD его уже не встретить, это интерфейс IDE (он же ATA, PATA).

IDE - в переводе с английского "Integrated Drive Electronics", что буквально означает - "встроенный контроллер". Это уже потом IDE стали называть интерфейсом для передачи данных, поскольку контроллер (находящийся в устройстве, обычно в жестких дисках и оптических приводах) и материнскую плату нужно было чем-то соединять. Его (IDE) еще называют ATA (Advanced Technology Attachment), получается что то вроде "Усовершенствованная технология подсоединения". Дело в том, что ATA - параллельный интерфейс передачи данных , за что вскоре (буквально сразу после выхода SATA, о котором речь пойдет чуть ниже) он был переименован в PATA (Parallel ATA).

Что тут сказать, IDE хоть и был очень медленный (пропускная способность канала передачи данных составляла от 100 до 133 мегабайта в секунду в разных версиях IDE - и то чисто теоретически, на практике гораздо меньше), однако позволял присоединять одновременно сразу два устройства к материнской плате, используя при этом один шлейф.

Причем в случае подключения сразу двух устройств, пропускная способность линии делилась пополам. Однако, это далеко не единственный недостаток IDE. Сам провод, как видно из рисунка, достаточно широкий и при подключении займет львиную долю свободного пространства в системном блоке, что негативно скажется на охлаждении всей системы в целом. В общем IDE уже устарел морально и физически, по этой причине разъем IDE уже не встретить на многих современных материнских платах, хотя до недавнего времени их еще ставили (в количестве 1 шт.) на бюджетные платы и на некоторые платы среднего ценового сегмента.

Следующим, не менее популярным, чем IDE в свое время, интерфейсом является SATA (Serial ATA) , характерной особенностью которого является последовательная передача данных. Стоит отметить, что на момент написания статьи - является самым массовым для применения в ПК.

Существуют 3 основных варианта (ревизии) SATA, отличающиеся друг от друга пропускной способностью: rev. 1 (SATA I) - 150 Мб/с, rev. 2 (SATA II) - 300 Мб/с, rev. 3 (SATA III) - 600 Мб/с. Но это только в теории. На практике же, скорость записи/чтения жестких дисков обычно не превышает 100-150 Мб/с, а оставшаяся скорость пока не востребована и влияет разве что на скорость взаимодействия контроллера и кэш-памяти HDD (повышает скорость доступа к диску).

Из нововведений можно отметить - обратную совместимость всех версий SATA (диск с разъемом SATA rev. 2 можно подключить к мат. плате с разъемом SATA rev. 3 и т.п.), улучшенный внешний вид и удобство подключения/отключения кабеля, увеличенная по сравнению с IDE длина кабеля (1 метр максимально, против 46 см на IDE интерфейсе), поддержка функции NCQ начиная уже с первой ревизии. Спешу обрадовать обладателей старых устройств, не поддерживающих SATA - существуют переходники с PATA на SATA , это реальный выход из ситуации, позволяющий избежать траты денег на покупку новой материнской платы или нового жесткого диска.

Так же, в отличии от PATA, интерфейсом SATA предусмотрена "горячая замена" жестких дисков, это значит, что при включенном питании системного блока компьютера, можно присоединять/отсоединять жесткие диски. Правда для ее реализации необходимо будет немного покопаться в настройках BIOS и включить режим AHCI.

Следующий на очереди - eSATA (External SATA) - был создан в 2004 году, слово "external" говорит о том, что он используется для подключения внешних жестких дисков. Поддерживает "горячую замену " дисков. Длина интерфейсного кабеля увеличена по сравнению с SATA - максимальная длина составляет теперь аж два метра. eSATA физически не совместим с SATA, но обладает той же пропускной способностью.

Но eSATA - далеко не единственный способ подключить внешние устройства к компьютеру. Например FireWire - последовательный высокоскоростной интерфейс для подключения внешних устройств, в том числе HDD.

Поддерживает "горячу замену" винчестеров. По пропускной способности сравним с USB 2.0, а с появлением USB 3.0 - даже проигрывает в скорости. Однако у него все же есть преимущество - FireWire способен обеспечить изохронную передачу данных, что способствует его применению в цифровом видео, так как он позволяет передавать данные в режиме реального времени. Несомненно, FireWire популярен, но не настолько, как например USB или eSATA. Для подключения жестких дисков он используется довольно редко, в большинстве случаев с помощью FireWire подключают различные мультимедийные устройства.

USB (Universal Serial Bus) , пожалуй самый распространенный интерфейс, используемый для подключения внешних жестких дисков, флешек и твердотельных накопителей (SSD). Как и в предыдущем случае - есть поддержка "горячей замены", довольно большая максимальная длина соединительного кабеля - до 5 метров в случае использования USB 2.0, и до 3 метров - если используется USB 3.0. Наверное можно сделать и бОльшую длину кабеля, но в этом случае стабильная работа устройств будет под вопросом.

Скорость передачи данных USB 2.0 составляет порядка 40 Мб/с, что в общем-то является низким показателем. Да, конечно, для обыкновенной повседневной работы с файлами пропускной способности канала в 40 Мб/с хватит за глаза, но как только речь пойдет о работе с большими файлами, поневоле начнешь смотреть в сторону чего-то более скоростного. Но оказывается выход есть, и имя ему - USB 3.0, пропускная способность которого, по сравнению с предшественником, возросла в 10 раз и составляет порядка 380 Мб/с, то есть практически как у SATA II, даже чуть больше.

Есть две разновидности контактов кабеля USB, это тип "A" и тип "B", расположенные на противоположных концах кабеля. Тип "A" - контроллер (материнская плата), тип "B" - подключаемое устройство.

USB 3.0 (тип "A") совместим с USB 2.0 (тип "A"). Типы "B" не совместимы между собой, как видно из рисунка.

Thunderbolt (Light Peak). В 2010 году компанией Intel был продемонстрирован первый компьютер с данным интерфейсом, а чуть позже в поддержку Thunderbolt к Intel присоединилась не менее известная компания Apple. Thunderbolt достаточно крут (ну а как иначе то, Apple знает во что стоит вкладывать деньги), стоит ли говорить о поддержке им таких фич, как: пресловутая "горячая замена", одновременное соединение сразу с несколькими устройствами, действительно "огромная" скорость передачи данных (в 20 раз быстрее USB 2.0).

Максимальная длина кабеля составляет только 3 метра (видимо больше и не надо). Тем не менее, несмотря на все перечисленные преимущества, Thunderbolt пока что не является "массовым" и применяется преимущественно в дорогих устройствах.

Идем дальше. На очереди у нас пара из очень похожих друг на друга интерфейсов - это SAS и SCSI. Похожесть их заключается в том, что они оба применяются преимущественно в серверах, где требуется высокая производительность и как можно меньшее время доступа к жесткому диску. Однако, существует и обратная сторона медали - все преимущества данных интерфейсов компенсируются ценой устройств, поддерживающих их. Жесткие диски, поддерживающие SCSI или SAS стоят на порядок дороже.

SCSI (Small Computer System Interface) - параллельный интерфейс для подключения различных внешних устройств (не только жестких дисков).

Был разработан и стандартизирован даже несколько раньше, чем первая версия SATA. В свежих версия SCSI есть поддержка "горячей замены".

SAS (Serial Attached SCSI) пришедший на смену SCSI, должен был решить ряд недостатков последнего. И надо сказать - ему это удалось. Дело в том, что из-за своей "параллельности" SCSI использовал общую шину, поэтому с контроллером одновременно могло работать только лишь одно из устройств, SAS - лишен этого недостатка.

Кроме того, он обратно совместим с SATA, что несомненно является большим плюсом. К сожалению стоимость винчестеров с интерфейсом SAS близка к стоимости SCSI-винчестеров, но от этого никак не избавиться, за скорость приходится платить.

Если вы еще не устали, предлагаю рассмотреть еще один интересный способ подключения HDD - NAS (Network Attached Storage). В настоящее время сетевые системы хранения данных (NAS) имеют большую популярность. По сути, это отдельный компьютер, этакий мини-сервер, отвечающий за хранение данных. Он подключается к другому компьютеру через сетевой кабель и управляется с другого компьютера через обычный браузер. Это все нужно в тех случаях, когда требуется большое дисковое пространство, которым пользуются сразу несколько людей (в семье, на работе). Данные от сетевого хранилища передаются к компьютерам пользователей либо по обычному кабелю (Ethernet), либо при помощи Wi-Fi. На мой взгляд, очень удобная штука.

Думаю, это все на сегодня. Надеюсь вам понравился материал, предлагаю подписаться на обновления блога, чтобы ничего не пропустить (форма в верхнем правом углу) и встретимся с вами уже в следующих статьях блога.

Многим пользователям компьютеров не однократно встречалось слово SATA, но не многие знают, что этого такое. Стоит ли обращать на него внимание при выборе жесткого диска, системной платны или уже готового компьютера? Ведь в характеристиках данных устройств слово SATA сейчас часто упоминается.

Даем определение

SATA это последовательный интерфейс передачи данных между различными накопителями информации, который пришел на смену параллельному интерфейсу АТА.

Начало работ по созданию данного интерфейса было организованно с 2000 года.

В феврале 2000 года, по инициативе компании Intel была создана специальная рабочая группа, в которую вошли лидеры IT технологий тех и теперешних времен: компания Dell, Maxtor, Seagate, APT Technologies, Quantum и много других не менее значимых компаний.

В результате двух годичной совместной работы, первые разъемы SATA появились на системных платах в конце 2002года. Они использовались для передачи данных через сетевые устройства.

А с 2003 года последовательный интерфейс был интегрирован уже во все современные системные платы.

Чтобы визуально ощутить разницу между АТА и SATA посмотрите фото ниже.

Последовательный интерфейс Serial ATA .

Новый интерфейс на программной уровне, совместим со всеми существующими аппаратными устройствами и обеспечиваем более высокую скорость передачи данных.

Как видно из фото выше 7 контактный провод имеет меньшую толщину, что обеспечивает более удобное соединение между собой различных устройств, а также позволяет увеличить количество разъемов Serial ATA на системной плате.

В некоторых моделях материнских плат их количество может достигать аж 6.

Более низкое рабочего напряжение, меньшее количество контактов и микросхем уменьшило тепловыделение устройствами. Поэтому контроллеры портов SATA не перегреваются, а это обеспечивают еще большую надежную передачу данных.

Однако к интерфейсу Serial ATA еще проблематично подключить большинство современных дисководов, поэтому все производили современных системных плат еще не отказались от интерфейса АТА (IDE).

Кабеля и разъемы

Для полноценной передачи данных через интерфейс SATA используются два кабеля.

Один, 7 контактный, непосредственно для передачи данных, и второй, 15 контактный, силовой, для подачи дополнительного напряжения.

При этом, 15 контактный, силовой кабель подключается к блоку питания, через обычный, 4-х контактный разъем выдающий два разных напряжения, 5 и 12 В.

Силовой кабель SATA выдает рабочее напряжение 3,3, 5 и 12 В, при силе тока в 4,5 А.

Ширина кабеля 2, 4 см.

Чтобы обеспечить плавный переход от АТА к SATA, в плане подключения питания, на некоторых моделях жестких дисков еще можно увидеть старые 4-х контактные разъемы.

Но как правило, современные винчестеры уже идут только с 15 контактным новым разъемом.

Кабель передачи данных Serial ATA можно подключать к винчестеру и системной плате даже при включенных последних, что нельзя было сделать в старом интерфейсе АТА.

Это достигается за счет того, что выводы заземления в районе контактов интерфейса сделаны немного длиннее, чем сигнальные и силовые.

Поэтому при подсоединении в первую очередь контактируют провода заземления, и только потом все остальные.

Тоже самое можно сказать и про силовой 15 контактный кабель.


Таблица, силовой разъем Serial ATA .

Конфигурация SATA

Основное отличие конфигурации SATA от АТА это отсутствие специальных переключателей и фишек типа Master/Slave.

А также нет необходимости выбирать место подключения устройства к кабелю, ведь на кабеле АТА два таких места, и устройство, которое подключено в конце кабеля считается в BIOS главным.

Отсутствие настроек Master/Slave не только значительно упрощает аппаратную конфигурацию, но и позволяет более быстро устанавливать операционные системы, к примеру, .

Кстати про BIOS, настройки в нем тоже не займут много времени. Вы там быстро все найдете и настроите.

Скорость передачи данных

Скорость передачи данных это один из важных параметров, для улучшение которого и был разработан интерфейс SATA.

Но этот показатель в данном интерфейсе постоянно увеличивался и сейчас скорость передачи данных может достигать до 1969 Мбайт /с. Многое зависит от поколения интерфейса SATA, а их уже 5.

Первые поколения последовательного интерфейса, версии «0», могли передать до 50 Мбайт/с, но они не прижились, так как сразу же были заменены на SATA 1.0. скорость передачи данных которых уже тогда достигала 150 Мбайт/с.

Время появления серий SATA и их возможности.

Серии :

  1. 1.0 – время дебюта 7.01.2003 года – максимальная теоретическая скорость передачи данных 150 Мбайт/с.
  2. 2.0 – появлюсь в 2004 году, полностью совместима с версией 1.0, максимальная теоретическая скорость передачи данных 300 Мбайт/с или 3 Гбит/с.
  3. 3.0 – время дебюта июль 2008 года, начало выпуска май 2009 года. Теоретическая максимальная скорость 600 Мбайт/с или 6 Гбит/с.
  4. 3.1 – время дебюта июль 2011 года, скорость – 600 Мбайт/с или 6 Гбит/с. Более усовершенствованная версия чем в п. 3.
  5. 3.2, а также входящая в него спецификация SATA Express – время выхода 2013 год. В данной версии произошло слияние SATA и PCIe устройств. Скорость передачи данных выросла до 1969 Мбайт/с.

В данном интерфейсе передача данных осуществляется на скорости 16 Гбит/с или 1969 Мбайт/с за счет взаимодействия двух линий PCIe Express и SATA.

Интерфейс SATA Express начал внедрятся в чипсетах Intel 9-й серии и в начале 2014 года был мало еще известен.

Если не внедрятся в дебри ИТ технологий, то в двух словах можно сказать так.

Serial ATA Express, это своеобразный переходной мост, который переводит обычный режим передачи сигналов в режиме SATA на более скоростной, который возможен благодаря интерфейсу PCI Express.

eSATA

eSATA используется для подключения внешних устройств, что еще раз подтверждает универсальность интерфейса SATA.

Здесь уже используется более надежный разъемы подключения и порты.

Недостатком является то, что для работы внешнего устройства нужен отдельный специальный кабель.

Но разработчики интерфейса в скором времени решили эту проблему внедрив систему питания сразу в основной кабель в интерфейсе eSATAp.

eSATAp, это доработанный интерфейс eSATA в реализации которого была использована технология USB 2.0. Основное преимущество данного интерфейса, это передача по проводам напряжения 5 и 12 Вольт.

Соответственно встречаются eSATAp 5 V и eSATAp 12 V.

Существуют и другие названия интерфейса, все зависит от производителя. Вы можете встретить аналогичные названия: Power eSATA, Power over eSATA, eSATA USB Hybrid Port (EUHP), eSATApd и SATA/USB Combo.

Как выглядит интерфейс смотрите ниже.

Также для ноутбуков и нетбуков разработан интерфейс Mini eSATAp.

mSATA

mSATA – внедрен с сентября 2009 года. Разработан для использования в ноутбуках, нетбуков и других не больших ПК.

На фото выше, как пример, представлено два диска, один обычный SATA, он внизу. Выше диск с интерфейсом mSATA.

Кому интересно, можете ознакомится с характеристиками mSATA-накопителей.

Такие накопители установлены практически в каждом ультрабуке.

Интерфейс mSATA в обычных компьютерах применяется редко.

Переходник mSATA to Serial ATA Convertor .

Вывод

Из выше сказанного понятно, что интерфейс последовательной передачи данных SATA еще не исчерпал себя полностью.

Новое на сайте

>

Самое популярное